AD=A0GB1 784  WHARTON SCHOOL PHILADELPHIA PA DEPT OF DECISION SCIENCES F/6 9/2
. AN EXTERNAL SCHEMA FACILITY FOR CODASYL 1978.(U)
1978 E K CLEMONS NOOO14=T7S=C-0862
UNCLASSIFIED 78-10-03 NL




Il

s
= 8

22 it ns

FEEFEEEE
FEEE

EF
]
Fe

FEFE

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A







AN EXTERNAL SCHEMA FACILITY FOR
CODASYL 1978

Eric K, Clemons

78-10-03

Department of Decision Sciences
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104

Research supported in part by Office of Naval Research

Contract NQ0OOl4-75-C-0462,

dige

80 3 -

T r——————
T!us v ;.
for e

Tl s
)

T Ras been upproved [




. Q’“Mﬁ.ﬂ%w‘-»mfwxam.ew—"-:L;J«:rm..‘-afﬁmﬁﬁ?ﬁW!:W&:Mr’ . . , ———
' SECURITY CLASSIFICATION OF THIS PAGE ("hen Dets Entered . . .
REPORT DOCUKENTATION PAGE BEFORE COMPLETING FORM

Hﬁ 2. GOVT ACCESSION NOJ 3. IPIENT 'S CATALOG NUNBER
L4/ ]78-10-83 9

, . . TITLE (and Subtitie) ‘ ~ - 5. Tvek of ageamy covenep

£ . %Ememal Schema Facllity for CODASYL 1978 4 i Technical ep:t't.

:s./ T ry n;r;uumc ORG. REPORT NUMBER

. 78-10-03
4 7. AUTHOR(S) ) %, CONTRACY OR GRANT NUMBEN(®)
o wns | D)
(36 e o | 43 o= Ts-c-ouez |

9. PERFORMING ORGANIZATION NAME AND ADDRESS P A 0. F:gg'r::&::s&%z‘&fg YAﬂ:

Department of Decision Sciences
‘ The Wharton School Univ. of Pennsylvania Tagk NRO48-272

Philadelphia, PA 19104

~ 15. CONTROLLING OFFICE NAME AND ADDAESS . 12. REPORT

: Office of Naval Research. { } 1 )7}( 7% ]
Department of the Navy B ) 3. NUMBERN AcEs

800 N. Quincy St., Arlington, V.

- MONITONING AGENCYNAME & ADORESS(H d”h:ml from_ Cmmlun. 7!:@ |I. S'CU!“’V CLASS. (ﬂ thie reperd)

,/ J vnclass ified

ECL ASHIFICATION/OOVNDRADING v’
CH EOTLE TS )
[y o!s’.l.u'lbn Sf"“‘ﬂw thie ‘w)-q-' =
3

catmasd Slowy

e o -
.

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the abatrest qlm‘ in Biock 20, i @ttiorent trom Repor))

18. SUPPLEMENTARY NOTES

9. KEY WORDS (Continue on roverse olde If nessscary and identily by Mech menber)

CODASYL, Data Description Language, external schema facility,
virtual data base

”m ry :n";;;.eg:i'o'ﬁ' 't.::.-t'h:‘CODAgﬁ..‘ﬁ:ta 5oscription Lanmge a new

" external schema description language to provide an external schgm E&M
' more powerful than that presently offered by CODASYL subschema f

1 : . external schema facility that, in effect, offers applications programmers a
virtual data base. Programmers will use records formatted, not like those

stored in the common data base, but like the cognitive structures employed
in program glevelopment. A possible language for external schema definition

\
.

’ L\ Q‘ is introduced. . -,
§ oD o n 1473 thivvon o 1 wov a8 18 oRsoLETE

S/N 9102-014- 8601 |

R SECURITY CLASSIFICATION OF THIS PAS - B
<’ . ' V4

() | S




REEE . RN u'_s‘exdy‘::.;:;‘-’z.‘-w;-::Lr‘z‘-"fmi‘mi‘.ﬂﬁ;rk\»,‘,““,b.i*ﬂ:i‘iy-“ ERLETS MR L0

ABSTRACT

We propose as an extension to the CODASYL Data
Description Language a new external schema description
language to provide an external schema facility more
powerful than that presently offered by CODASYL subschemas.
We note that the present facility relies on records and
sets that closely regsemble those employed in the schema,
with unfortunate implications for programmer productivity,
data independence, and communications channel traffic.

We propose instead a powerful external schema facility
that, in effect, offers applications programmers a virtual
data base. This data base, while derivable from the stored
data base, 18 not constrained to resemble it in form; thus

programmers will use records formatted, not like those ]
stored in the common data base, but like the cognitive

structures employed in program development. A possible
language for external schema definition is introduced.

Accession For r
NTIS Ginkl
DDC TAB
Unannourced

ﬁ Justificutien

By
_Ristributicng

I_Avoilahitite M ing

h.alle Yor
cre 14l

I Al




e

.
-
5
%
&
¥
:;\'.'
o
%
%,

vy - v .

AN EXTERNAL SCHEMA FACILITY
FOR CODASYL 1978

1. Introduction

The CODASYL data description and data manipulation
languages are rapidly emerging as de facto national data base
standards; in fact, John Berg of the National Bureau of Standards,
currently Acting Chairman of the newly reconstituted ANSI/X3/SPARC
Data Base Study Group,'ltatec that the CODASYL DML and DDL will
emerge as formal national standards by 1981 [3]. I have previously
stated my reasons for considering these choices unfortunate, while
acknowledging the need for any future DBMS standard to be down-
ward compatible so as to provide continuing support for user
application implementations based on these languages (8]. 1Imn
this paper I present a more comprehensive solution to the problems
inherent in the CODASYL specifications, an extension to the DDL
that would permit development of an alternative DML with better

support of applications programming,

My principal objection to the CODASYL 1978 specifications
is the nature of the programmer interface. This 1is not a new
objection; Engels, an original member of the Data Base Task Group,
published his objections to this interface [11] within monthe of

the publication of the DBTG Report [9]). The proposal of macro




10

L AP SR TR
S RO i st by o

facilities to hide this interface from the programmer soon
followed [17]., But, with the introduction by the original
ANS1/X3/SPARC Study Group of the three-schema data base archi-
tecture, we now have the ability to provide a superior interface
for applications programmers. In section 4 of this paper I will
describe an external schema facility with far greater capabilities
than the CODASYL subschema facility that it is intended to

replace.

2. Background Material

2.1 A Review of the ANSI/SPARC Reports

By 1975, discussion of the "correct" data model --
hierurchicli, network, or relational -- had become widespread,
occasionally acrimonious, and futile, No single data model could
be selected, With the publication in 1%75 of the first ANSI/SPARC
Data Base Study Group Report [1], one reason for this impasse
became clear: There were three different users of data base
systenms, interacting with the systems at different levels, and
with dramatically different needs.

The data base machine itself needed device-level detail
including data descriptions, addresses, and access paths, to per-
mit data retrieval and efficient system operation. The enterprise

as & vhole required logical completeness: a description of all

. - . . '
- . - . . . .
-
v
.



entities of interest, their significant attributes, and their

vrelationships. This need not include device detail needed for
efficient operation, bdut must be sufficiently complete to support
the enterprise's collection of diverse operations. And the
individual applications programmer required logical simplicity:
data structures perhaps less general than those provided to

support the numerous and diverse neads of the full organization,
but well suited to the specific program in which they were employed
and closely matching the cognitive structures the programmer

employed in its preparation,

Recognizing that these requirements might prove to be
incompatible, the ANSI/X3/SPARC Study Group proposed a multi-level,
multi-schema dats base architecture., At the machine level a single

internal schema provided details permitting efficient operation.

For the enterprise a single conceptual schema provided an integrated
description of data and their logical relationships. And, for each
application program, an external schema was provided that offered a
viewv of the dats not necessarily similar in form to that of any
other schema, but well guited to the specific programming task

being performed.

In this paper we are not concerned with the details of
the internal schema, since the existence of the conceptual schema

makes the internal level of little consequence to the design of the

e




programmer interface, We will also not be concerned with the

selection of a conceptual schema that is in any sense "complete"
or the best possible, primarily because no such design has been
developed; rather, we shall assume that the pre-eminence of
CODASYL implementations justifies for the moment the selection

of the CODASYL model for the conceptual level,

2.2 Role of the External Schema

My principal area of interest has for several years
been the design of external schema facilities., This level of the
three schema architecture has the greatest effect on programmer
productivity. It is the level with which the greatest number of
users will interact, and thus the most important level for formal
standardization., It is, unfortunately, the level at which both

ANSI/SPARC and CODASYL offer the least guidance to DBMS designers.

The most important role of the external schema should
be to facilitate programmer use of the data base. This can best
be accomplished by providing user views, essentially virtual
data bases that are closely designed to match the cognitive
structures that the user employs in preparing his program rather
than the data structures provided in the data base. The records
in these virtual data bases must of course be derivable from the
data sctually stored; virtual data bases may be subsets, reformatted,
with records combined in ways that simplify or eliminate the need

for programmer navigation,




has

1 ey i i T v

A single example will serve to make these concepts clear.
We consider a simple data base: courses include multiple sections,
students have taken many courses, and for each student in each
course a single grade is stored. Irrespective of the model employed
at the conceptual level -- hierarchical, network, or relational --
and irrespective of the programming language employed, an excessive
amount of work may be required to prepare some simple queries,
For example, to prepare a student's summary transcript with name

and repeating term and term average information: . I

NAME

TERM, AVERAGE
TERM, AVERAGE

TERM, AVERAGE

using the CODASYL data base depicted in figure 1

COURSE:
" COURSE-ID

CREDITS
SECTION-REC: STUDENT:

SECTION=-ID STUDENT=-NAME

FACULTY-NAME

TERM

GRADE:
GRADE

FPigure 1 =-- A CODASYL Data Base to Support Student
Transcripts, Course Rosters, and Registration




we require the code segment included in figure 2,

* WORKING STORAGE INCLUDES A STRUCTURE OF THE FORM:
* 01 TERM-HISTORY, INDEXED BY POSIT.

* 02 TERM-COUNT PICTURE S99,

* 02 TERM-ENTRY OCCURS 15 TIMES,

* 03 TERM-ID PICTURE X(6).
* 03 TERM-POINTS PICTURE §999.
* 03 TERM=-CREDITS PICTURE 5999,
* 03 TERM-AVERAGE PICTURE S9V99,

FIND-SUMMARY~TRANSCRIPT.
FIND STUDENT RECORD,
PERFORM CLEAR-TABLE,
MOVE ¢ TO ERROR STATUS,
FIND FIRST GRADE RECORD IN STU-GRD SET,
PERFORM GRADE-LOOP THRU GRADE~LOOP-EXIT
UNTIL ERROR-STATUS NOT EQUAL ¢.

PERFORM SORT-TABLE-BY-TERM THRU SORT-TABLE-EXIT
VARYING I FROM 1 BY 1
UNTIL I GREATER THAN TERM~-COUNT.

PERFORM COMPUTE~TABLE
VARYING I FROM 1 BY 1
UNTIL I GREATER THAN TERM-COUNT.

SORT~TABLE-BY-TERM IS SIMPLE SORT, NOT SHOWN,
COMPUTE-TABLE SETS TERM-AVERAGE (I) =

TERM-POINTS (I) / TERM-CREDITS (1),

ALSO NOT SHOWN,
CLEAR TABLE ZEROES ALL ENTRIES IN TABLE, NOT SHOWN.

¥ RN

GRADE-LOOP,
FIND NEXT GRADE RECORD IN STU-GRD SET,
IF ERROR-STATUS NOT EQUAL ¢,
GO TO GRADE-LOOP-EXIT,
GET GRADE RECORD.

FIND OWNER RECORD OF SEC-GRD SET,
GET SECTION-REC RECORD.

FIND OWNER RECORD OF CRS~SEC SET.
GET COURSE RECORD,




R L I T D e RO sl ¢ s B e e e PR e 2 I o A O s 1t e

PR .,..—.;,,._-»q-f.?.- ’?‘1"%

SEARCH TERM-HISTORY:
AT END ADD 1 TO TERM-CQUNT,

MOVE TERM-COUNT TO POSIT,
MOVE TERM TO TERM-ID (POSIT)

)
WHEN TERM-ID (POSIT) EQUALS TERM, NEXT SENTENCE.
CALCULATE TERM-POINTS (POSIT) =
TERM-POINTS (POSIT) + GRADE.GRD¥*
COURSE.CREDITS.
] :
ADD COURSE,.CREDITS TO TERM-CREDITS
(POSIT)
GRADE-LOOP-EXIT.
EXIT.
)
Figure 2 -- DML Code Segment to Create Summary Transcript.
»
Clearly, we would prefer to say:
' READ SUMMARY-TRANSCRIPT
where summary-transcript is a rather simple record in the user
% view, constructed by a rather powerful external schema facility.
3. Limitations of the Present CODASYL Subschema
s As I have written elsewhere [7, 8], a major limitation
J of the current CODASYL specifications is the design of the sub-
schema. In fact, the subschema so closely resembles the conceptual
N
+
»




schema that it cannot truly be considered an external schema

facility. Both must employ the network data model. More sig-
nificant, both employ the same collection of record types and
sets, although in the subschema some minimal reformatting may
be provided., As a consequence, the programmer is still required
to perform navigation to accomplish all but the most trivial of
tasks, Also, there 1is little to protect the applications programs
- from changes to the conceptual schema; since the external schemas
' are also affected by most changes, these programs will need to bhe
rewritten. We note, for example, that too often the addition of
an unanticipated application to be supported will necessitate
? changing the conceptual schema from a simple hierarchy to a
confluency representing a many-to-many relationship. Because
of the close relationship between schema and subschema, programs
processing this data base will need a different set of FIND and
GET statements, and perhaps different control logic as well,
Finally, since the subschema's ability to perform data aggregation

v and data reduction is so limited, these functions must be performed

by the application program through host language statements; thus,
in a distributed environment, a program that requires only averages
g will still have to request individual course and grade records,

greatly increasing the necessary channel traffic.

7 In summary, we note that the form of the CODASYL sub-~

L ' schema facility has the following results:




T - b N aes shaats Y. TR

" h#éwW&%éﬂﬁﬁﬁﬁﬂﬁ&gW&JQngd&&&aﬂﬂ#&ﬁ%ﬂ‘ﬂuﬁuuw
»
10 ;
' -4
1. It limits programmer productivity by requiring
navigation to perform almost all inter-record
associations; this has been found to be the
most difficult aspect of data retrieval in any
language and using any data model [12]
2. It limits data independence because changes to
F . the conceptual schema necessitated by addition
of new applications will alter the existing
external schemas as well [8, 15]
f 3. It increases channel traffic by limiting the
data reduction that can be performed by the
remote data base machine {
4, Design of an External Schema Facility
4,1 1Introduction to a Traditionalist's External Schema Facility
The external schema facility proposed is traditional, in
that it does not change the way we view the programming task; it
does not add new features such as operational naming [16],
generalization hierarchies, or higher level language statements
to perform implied iteration. Rather, it changes the way we view
2 the external schema facility, In fact, in terms of programming
L languages it represents a step backwards: We use the external
.
K 1
| o)

| 1




schema to hide from the programmer the fact that he is employing

a DBMS and remove all DML statements from the host language.

Our intention is to provide each programmer with a
virtual data base composed of virtual files suited to a particular
applicatiqn. Interaction with the data now requires only a tradi-
tional file-oriented READ, and we employ the external schema
facility to transform this read request into the appropriate
sequence of FIND and GET statements and utility calls to perform

gsorting and data reduction.

It appears impossible to design a truly universal data
base interface; the requirements for accounting applications are
simply too different from the requirements of a three dimensional
display system offering variable perspective drawing to support
architectural design. We have concentrated, therefore, on an
interface to support common data base uses: data retrieval,

report generation, and update,

After years of commercial programming and intensive
study of applications requirements, I believe that the interface
provided for individual applications programmers need support no
data structure more complex than hierarchies. This is not to say
that for the enterprise, at the conceptual level, hierarchies are

sufficient; rather, the networks at the conceptual level are




required by the incompatible collection of hierarchies needed by
the application programs. For example, one application to generate

transcripts may require the following data structure:

STUDENT
TERM
COURSE, GRADE
COURSE, GRADE

TERM
COURSE, GRADE

A related application to provide class lists for faculty would
require

FACULTY-NAME, COURSE, SECTION
STUDENT~NAME

STUDENT-NAME.,

The conceptual schema to support both applications is not a

hierarchy but a network, as shown in figure 1,

This does not mean that any programmer requires the full
plex structure, More significant, it does not imply that any
single programmer be forced to perform complex inter-record navi-
gation to reconstruct information objects of interest, such as
transcripts and course listings. Surely there exist data that do

represent graphs, such as transportation and telecommunications




AN D onaaritis i e 2 i RAY - v L I U JNIPENPTDREIETIRRIK: PAT vV ISPy o = F =t ReEG, i AR

13

T K AR ?m

networks; for such applications the data must indeed contain
network information, such as the costs and capacities of trans-
portation between two locations, but I remain unconvinced that
even in such cases network structured data, with a network struc-

tured schema, provide a superior programmer interface.

4.2 Restructuring to Produce Hierarchies

If we are to offer individual applications programmers

an
©

an adequate and useful external schema facility based on hierarchies,
then we must provide an adequate facility for constructing useful
hierarchical virtual records from the stored data. In particular
,assoclations between records or among several records must be made,
permitting required data to be accessed; individual items required
for virtual records must be defined, permitting values to be
retrieved or constructed; and the virtual record must be structured
as the user requires. We will treat structuring in this section;
data access and item definition are treated in the following

! sections,

Three concepts are important in understanding hierarchical

data structures: extent, entry type, and content, Extent may be
single or all; a structure with single extent has only a single
A subordinate entry, while a structure with all extent has repeated

L‘, subordinate entries, Thus, 1f we wish to associate in a single

c e el o s e - - - . -




record a student name and all his course grades, all extent is
tequired; 1f each record 1is to contain only a single course grade

then single extent is required.

An individual entry in a hierarchy may be either simple
or grouped. Thus an entry may correspond to information about a
single course taken if it is simple, or about all courses taken
in a single term if the entry has grouped structure. Extent and
entry descriptions may be combined; for example, all extent and
grouped entries would permit data to be grouped by term and entries

for all terms to be combined in a single record.

The information content of a structure may be complete,
or only summary information may be contained. For example, the
data structure may contain a complete record of courses taken and

grades received, or it may contain only term averages,

The attributed for extent, entries, and content may be
combined to yield a 2x2x2 classification of data structures. In
the resulting eight-way classification only seven combinations
are of use; the combination simple, single, summary is readily
seen to be of no interest, Examples of each of the seven types

of structures are shown as figure 3,




R. J. Nash 3.6
Fall 78 3.75 DS15 A
DS25 A
STAT1 B
ECON2 A

R. J. Nash 3.6

15
R. J. Nash Fall 78 DS1S A
R. J. Nash Fall 78 DS25S A
R, J. Nash Fall 78 STAT1 B

a.) three records, SIMPLE, SINGLE, COMPLETE, each reporting
on & single student in a single course

R. J. Nash 3.6

Fall 78 DS1S A
Spr 78 DSl A
Fall 78 DS25 A
Spr 78 DS2 A
Fall 78 ECON2 A
Fall 77  ACT1 B
Fall 77 FIN1 B
Fall 78 STAT1 B
Fall 77 ECON1 B

A

Spr 78 FIN2

b.) one record, SIMPLE, ALL, COMPLETE, having cumulative
average as well as individual grades

R. J. Nash 3.6 1

c.,) one record, SIMPLE, ALL, SUMMARY, having cumulative
average but no individual grades

d.) one record, GROUPED, SINGLE, COMPLETE, displaying
cumulative average, as well as courses and term
average for a single term

Fall 77 3.0 ACT1
FIN1
ECON1

Spr 78 4.0 DS1
DS2
FIN2

Fall 78 3,75 DS1S
DS25
STAT1
ECON2

PEd>PIPIPI>TIE

e.) one record, GROUPED, ALL, COMPLETE, displaying
cumulative average, as well as courses and term
average for each term




R R i T L : g 0 Ui, ARSI
1
N
»
R. J. Nash 3.6
Fall 78 3.75
£.) one record, GROUPED, SINGLE, SUMMARY, displaying
cunulative average as well as term average for a
< single term
R, J. Nash 3.6
Fall 77 3.0
Spr 78 4,0
Fall 78 3.75
N g.) one record, GROUPED, ALL, SUMMARY, displaying
cumulative average as well as term average for
. each term
’ Figure 3 -- Examples of Each of Seven Record Types
in Classification of Hierarchies.
X

By specifying multi-level groupings, it is possible to
define more complex structures and provide more general summaries,
For example, we may wish to group courses by school (arts,
engineering, business) and within school by term, to provide term
averages by school and overall school averages. And, as shown in
the following section, structured data elements may themselves
comprise structured elements, permitting records of great com-~-
plexity to be declared. In fact, with the addition of order
specificastion to this seven-way classification, a general external

schema facility of eubstantial utility has been developed,




4.3 Access Information

0f course, the data included in virtual user records is
derived from data present in the stored data base; therefore it is
necessary that data be retrieved to permit user records to be con-
structed, We feel that it {s necessary to specify in the mapping
definition precisely which records are to be accessed, rather than
- to permit the external schema facility itself to determine which
records are required. This provides generality: access conditions
of complexity, based on set associations and record content, may bde
used when necessary. It requires the author of the map to specify

which access path to use when multiple paths exist, and it provides

LY3
a“

a small additional level of datas independence by requiring access
specification, even when only a single path exists. In short,
mandatory access specification increases the probability that the

data retrieved are actually the data desired.

In a well designed CODASYL implementation, most of the
frequently used inter-record sssociations will he between records
related by set occurrence, Therefore, we expect that the most
important means of access path specification will be through set
membership or ownership. Since the records desired may compose a

subset of members of a set, qualification may also be necessary.

e — - —— - — o e - . A --




&

4,4 Datas ltem Specification

.t is necessary to specify all desired dats elements in
the user record since not sll data in the stored records are to be
included in the user record and not all items in the user record
are directly retrievable from the stored records. Data items are

of three types:

1., real items, retrieved from the stored data base

2, virtual elementary items, calculated from the
stored data base using standard functions,

according to computations specified

3. virtual structured items containing additional

data elements i

Since the components of virtual structured items may themselves be
virtual structured items, complex records may be constructed as

needed.

5. An Extension to DDL: A Schema to External Schema Mapping
Language

5.1 1Introduction to a Mapping Language

The mapping language proposed is based upon the classi-
fication of hierarchies introduced in section 4.2, The language ﬁ
will specify all information needed to map stored dats base records

into the desired virtual user records. Structuring information,




which determines the form of the user record, is described in sec-"

1 tion 5.2. Access information, which determines which data base

records will be used, is described in section 5.3, and data item

S
definition, which determines the actual content of the user record,
1s described in section 5.4,

- 5.2 Structuring Information

b Structuring information specified in the map determines

the class of hierarchy being defined; that is, the options

 $
specified here determine extent, entries, and content, The form
of a structure definition 1is:

- STRUCTURE structure-name: (option-list)

access-statement,

data~-item-definitions,

END structure-name.
A structure may correspond to a user record definition, like an
0Ol-level COBOL entry, or to a complex entry within a user record.
The option-list specifies single or all extent, simple or grouped

; entries, and complete or summary only content. Defaults are

single, simple, complete. A single access statement is required

corresponding to each defined structure; without an access state-

, ment, there is no need to define a structure. Data item definitions
are optional; there may be zero, one, or more data items defined in
a structure, Defined itemes may be elementary, or they may be struc-

tures containing access statements and data item definitions.




gy

20

5.3 Access Information

Associated with each structure is a data access state-
ment; the number of records retrieved plus the structuring options
specified determine the structure of the declared user record,
Access information may be based on set ownership or membership,

or on qualification using record content.

The form of the access statement 1is:

ACCESS recordnamel RECORD
Qualification J

MEMBER OWNED BY
IN setname record-reference
OWNER OF

Both qualification and set specification are optional,
The outermost structure sometimes will employ neither, as when
creating virtual records corresponding to all data base records

of a given type:

ACCESS STUDENT RECORD.

Sometimes it will employ qualification, when creating virtual

records corresponding to a subset of the data base records:

ACCESS STUDENT RECORD
WHERE MAJOR = 'DEC SCI',




e Ve LN SR YN BRI . 5 A 0, I AT A AR s

Sometimes access will employ set specification:

ACCESS GRADE
MEMBER IN STU-GRD OWNED BY STUDENT.

»

And sometimes access will employ both set specification and

qualification:

ACCESS GRADE

- WHERE GRD = 4
‘MEMBER IN STU-GRD OWNED BY_STUDENT.

When the access statement 1s not in the outermost structure decla- ]
ration, it is expected that set specification will be used. To
retain compatability with our relational interface, access based
on qualification without set specification is permitted, though
for performance reasons it 1is discouraged, The precise form of
qualification is of little theoretical interest; we use relational ]
and Boolean operators and a syntax based on SEQUEL. The only
slight complication arises because CODASYL records are not nor-
malized and may include repeating values; therefore a distinction
must be made between any value gatisfying a condition and all

values satisfying the condition.

Note that records used in constructing user records are

J retrieved in a top-down order; that is, a record for the outer-
most structure is accessed first, then records for its directly
!
ot contained structures, followed by the successive levels of contained
.‘\ 1

V.
N
-




structures. Thus, any data used in qualification must be either

from the record being accessed or from higher level structures;
likewise, any records used in set specification must have been

accessed in a higher-level structure.
Record-reference has the form:
% structurename.recordname

t N although 1if a record type is referenced in only a single access

el

statement, specification of the containing structure name may be
omitted, Record reference may itself employ set specification. 1

Thus to access COURSE records corresponding to GRADE records pre- 3

viously accessed, we write:

ACCESS COURSE RECORD
OWNER IN CRS-SEC OF SECTION
OWNER IN SEC~-GRD OF GRADE,

Finally, we note that 1t is often useful to construct
user views that are based on other, previously defined views.

Therefore, we permit records accessed in a structure declaration

to be either data base records or virtual user records; the only
restriction on use 1s that since set relationships are defined only

for real records, they must not be employed to identify desired

user records.




. R - e eae e DL A it e

23

5.4 Data Item Definition

Data items in user records are of three types, and there-
fore three forms of data item definition are provided. For elemen-

tary virtual items, definition has the form:

item-name: (description)
arithmetic-expression

The arithmetic expression can be any well-formed arith-
metic expression and may employ built-in functions such as MAX,
COUNT, SUM, and AVERAGE. The description is optional; it specifies
which terms are summary values and, when grouped entries are re-
quested, specifies at which level summaries are to be taken. Note
that all terms used in arithmetic expressions must be single-
valued; thus, if terms from contained structures are employed,

all intervening structures must have single extent requested.

Just as data retrieval in virtual record construction was
performed top-down, data item computation 1s performed bottom-up.
This imposes a restriction on the use of terms in arithmetic ex-
pressions: while terms used may be real or virtual, all virtual

terms must be from a contained lower level structure.

Also, we note that in some instances when a single data

value 18 to be selected from an accessed record, we may choose to

introduce a defined data item rather than add another contained




24

structure. Thus, to retrieve the term of a section corresponding

to a previously accessed grade, we may write:

TERM: ACCESS SECTION RECORD
OWNER IN SEC-GRD OF GRADE

SELECT TERM,

Real data items may be defined as were virtual items;
the arithmetic expression then is the simplest possible, containing
only the single term, Alternatively, i1f several real items are to
be contained in a single structure, they may be defined by selection

from the record accessed within the structure.

Virtual data items are themselves structures, with

definition as described in section 5.2,

Only data items explicitly defined or selected will be

included in the constructed user record.
5.5 An Example of A Mapping Definition

The user record to be defined is the summary transcript
introduced in section 2., The mapping definition to produce this
transcript is provided in figure 4. We note, but are largely un-
concerned by, the fact that the map is quite difficult to read,
The external schema facility 1s intended to provide an interface

for applications programmers permitting more easy access to stored

information., It is not necessary that preparation of mapping




e i G o -
. S ey V."m;;‘.-l R el e e et P D et TF ;»ﬁw:..mm s -
)
25
¥
definitions be simple for these programmers; indeed, we are not
certain that this would be valuable since we do not intend for
these maps to be prepared by programmers. However, alternate
formats for definition might prove preferable.
L STRUCTURE TRANSCRIPT:
) ACCESS STUDENT WHERE MAJOR = 'DEC SCI'.
SELECT STUDENT-NAME,
* TERM-LEVEL STRUCTURE, CONTAINS ALL TERM SUMMARIES
STRUCTURE TERM-DATA: (SUMMARY, ALL, GROUP BY TERM,
ORDER BY TERM).
ACCESS GRADE RECORD
MEMBER IN STU-GRD OWNED BY STUDENT,
y TERM:
ACCESS SECTION RECORD
OWNER IN SEC-GRD OF GRADE,
4 SELECT TERM.
' CREDITS:
ACCESS COURSE RECORD H
OWNER IN CRS-SEC OF SECTION
1 - OWNER IN SEC-GRD OF GRADE,
k SELECT CREDITS.
TERM-AVERAGE: (TERM SUMMARY)
SUM (GRD*CREDITS)/SUM (CREDITS).
TRANS-AVERAGE: (SUMMARY)
E SUM (GRD*CREDITS)/SUM (CREDITS).
3 END TERM-DATA.
END TRANSCRIPT,
Figure 4 -- Definition of Map to Construct Summary Transcript.




' %ha

26

6. Remaining Difficulties

A number of significant difficulties remain, relating to
implementation, update, and user performance., There are significant
design problems that must be surmounted if virtual data bases are
to be produced on demand, rather than produced off line and stored.
These problems are most troublesome when the map employs ORDERED BY
specification, particularly when the ordering terms are virtual
items, or when the user record definition itself exploits other

virtual user records.

Most external schema definitions will employ mape that
are not invertible, and this is known to cause difficulty when the
resulting user records must be updated [4, 6]. It is of course
necessary that changes to the user records be captufed as changes
to the corresponding stored data base records, yet the changes to
be made cannot always be determined if the maps are not invertible,.
In fact, analysis of this problem to date has been restricted to
the simpler relational model; update of a CODASYL data base which
according to the 1978 specifications may have very complex set

selection requirements will no doubt prove at least as difficult,

Of course, if an enhanced external schema facility is
proposed to replace the present subgschemas provided by CODASYL in

order to provide better support of applications programmers, it is




certainly desirable to verify that improved programmer performance
does indeed result. Human factors experimentation in data model
and programming language design has proved exceedingly difficult,
Nevertheless, some valuable studies are available as examples,

and it is necessary that some evaluation of the proposed interface

be performed,

7. Concluding Remarks

The interested reader is referred to earlier works for a
more complete treatment of hierarchies and recursive hierarchies

{5]. An outline of a design for implementation is also presented

[5] »

We are presently engaged in developing a prototype
exﬁernal schema facility with acceptable machine performance, and
it should be completed by spring of 1979, Performance data, user
reactions, and a demonstration should be available before the

SIGMOD conference in May 1979,




28

ACKNOWLEDGEMENTS

I would like to acknowledge my debt to my colleagues at
the University of Pennsylvania, Rob Gerritsen and Frank Germano;
to my co-panelists at the Fourth Very Large Data Base Conference,
John Berg, Frank Manola, and Diane C. P, Smith; and to my co-
participants at the N.B.S, Three-Schema Feasibility Workshops,
particularly Don Chamberlin, Henry Lefkowitz, and Carlo Zaniolo.
Their thinking has influenced my thinking. Obviously, biases,
errors, and omissions in this paper are my own.

REFERENCES

1, "ANSI/X3/SPARC Study Group on Data Base Management Systems
Interim Report 75-02-08", FDT--Bulletin of the ACM
SIGMOD, Vol. 7, No. 2, 1975.

2, Berg, J. L. "Implementing a Framework for DBMS Standards”,

: Unnumbered Working Paper, Institute for Computer Sciences
and Technology, National Bureau of Standards, Gaithersberg,
MD., March 1978.

3. Berg, J. L, Unpublished letter to ANSI/X3/SPARC Study Group l
membership, Document No, ANSI/X3/SPARC/DBS~-S5G-78-6,
November 1978.

4, Bernstein, P. A, and Dayal, U. "On the Updatability of
Relational Views", Proceedings of the Fourth Inter-
national Conference on Very Large Data Bases, Berlin,
West Germany, September 1978, pp. 368-377,

5. Clemons, E. K., Design of a User Interface for a Relational
Data Base, Dissertation, School of Operations Research,
Cornell University, 1976.

6. Clemons, E, K, "An External Schema Facility to Support Data
Base Update", Databases: Improving Usability and
Responsiveness, ed. Ben Schneiderman, Academic Press,
New York, 1978, pp. 371-398,

7. Clemons, E, K. '"The External Schema and CODASYL",
Proceedings, Fourth International Conference on
Very Large Data Bases, Berlin, West Germany,
{ September 1978, p. 130,
8. Clemons, E. K. "Rational Data Base Standards: An Examination
1. of the 1978 CODASYL DDLC Report'", Decision Sciences
Working Paper 78-10-02, University of Pennsylvania, 1978,

V-




- g g s c——
L)

gy

w

29

9. "CODASYL Data Base Task Group April 71 Report"™, ACM,
New York, 1971,

10. "CODASYL Data Description Language Committee Journal of
Development”, 1978,

11, Engels, R. W. "An Analysis of the April 1971 Data Base
Task Group Report". Proceedings ACM SIGFIDET Workshop
1971, ACM, New York, pp. 69-92.

12, Lochovsky, F. and Tsichritzis, D, "User Performance Con-
siderations in DBMS Selection"”, Proceedings, ACM SIGMOD
Workshop, Toronto, Canada, August 1977, pp. 128-134,

- 13, Manola, F. "On Relating the CODASYL Database Languages
and the ANSI/SPARC Framework". Proceedings, Fourth
International Conference on Very Large Data Bases,
Berlin, West Germany, September 1978, p. 132,

14, Manola, F. "A Review of the 1978 CODASYL Database
Specifications", Proceedings, Fourth International
Conference on Very Large Data Bases, Berlin, West
Germany, September 1978, pp. 232-242,

15. Smith, D, C, P, "Conversion and the CODASYL Framework”,
Proceedings, Fourth International Conference on
Very Large Data Bases, Berlin, West Germany, ’
September 1978, pp. 133-134,

16, Smith, J. M. and Smith, D. C. P, "Integrated Specifications
for Abstract Systems',Technical Report UUCS-77-112,
Computer Science, University of Utah, 1977,

17. Taylor. R. W. "Data Administration and the DBTG Report’.
' Proceedings ACM SIGMOD Workshop 1974, ACM, New York,
ppo 631-4460

18, Tsichritzis, D. and Klug, A. "The ANSI/X3/SPARC DBMS
Framework Report of the Study Group on Database
Management Systems". AFIPS Press, Montvale, N, J.,
1977,

g
S -~




? - ' - L e

DISTRICUYICI LIST
Cepartrent of the ilavy - Cffice of liaval research

Cata Case !ianagement 3ysterms Project

V.
N
-t
“

Defense Documentation Center
(12 conies)

Cameron Station

Alexandria, vA 22314

Office of .iaval Research
Code 1021IP
Arlington vVirginia 22217

Cifice of .Jdaval 3esearch
Sranch Cffice. Chicago
536 sSouth Clark Strzet
Chicago, IL 6ud45

tlew Yorx Ar=2a Office

715 Broadway = 5th Flcor
wew York, Y  10uw@3

Cr. A. L. Slafkosky

Scientific Advisor

Commandant of the larine Corops
(Code RD-1)

liashington. LC 23384

Office of laval Research
Code 456
Arlington, VA 22217

Office of Naval Researcn

(2 corvies)

Information Systems Program
Code 437

Arlington. VA 22217

Cffice of iiaval research
Branch Cffice

495 Summer Street
Boston. A &2213

Cffice of ilaval Research
Zrancn Office. Pasadena
1039 East Creen Street
Fasadena. CA 311lu6

Naval Research Laboratory

(6 copies)

Technical Iniormation w»ivision
Code 2627

Jdashington. OC 29375

Ctfice of llaval research
Code 455
Arlington VA 22217

Naval Electronics Laboratory Center
Advanced Software Tecnnology Division
Code 5200

San Diego. CA 92152

1 - L AR Y A YN L s ¥

s

s




r. £. . 3leissner

tiaval 3nip Research and
Levelogment Center

Computation & .Jathanatics vept.
Bethesda T 20034

#Mr. Kim 2. Thompson

Technical Director

Information Systems Division
(0P-911G)

Office of Chief of Naval Cgerations
dasnington. oC 20350

Professor Cmar fling

Colurmbia University

in the City of uew York

pept. of Electrical tngineering
and Computer Science

ew York. oY 10027

Commander, iiaval Sea 3ystems Command
Cepartment of the Navy

washington, D.C. 20362

ATTENTION: (Pi1334611)

Captain Richard L. Martin, USd
Commanding Officer

USS Prancis iiarion (Lra-243)
FRO new York 9501

rage 2

Caztain Grace il. Hopoer

NAICC:/:15 Planning Zranch
(OF=-916L)

Jifice of Chief of saval Operations
Jasnington. LC 23353

Surcau of Library and
Information 3cience Research
Rutgers - The State University
153 College Avenue
Jew 3runswick. I
Attn:

GBYI3
tr. denry Voos

Defense ilagping Agency z
Tovograrciiic Center

ATTH: Advanced Technology
Civision

Code 41300 (lr. #. Lullison)
6504 Crookes Lane
washington. 0.C. 2u3l5

Major J.P. Pennell
keadguarters. tiarine Corps
iashington., C.C. 20336
ATTENTION: Code CCAa-44

Professor ilike Athans
ilassaciausetts Institute of Technology
Dept. of Electrical cngineering and
Computer Science
77 Mass. Avenue
Cambridge, MA $213S




